Where To Buy Fiber Optic Filament
Fiber optics! Fiber optics! Admittedly, I'm a little obsessed with fiber optics, and for good reason. They are a durable, versatile, and relatively simple way to add beautiful lighting effects to anything you're making. Just look at some of the gorgeous projects you can create with them! There was a time when I mostly used el wire in my illuminated designs, but ever since the amazing Natalina and Technorainbows introduced me to the wonders of fiber optics in their various forms, I've been on a bit of a fiber optic bender. So come fall down this rabbit hole with me, and turn yourself into a mesmerizing bioluminescent sea creature... you know you want to.
where to buy fiber optic filament
Download Zip: https://www.google.com/url?q=https%3A%2F%2Fgohhs.com%2F2ueWkN&sa=D&sntz=1&usg=AOvVaw0vpVIN5LVJAE2yBN4ArX8h
Fiber optics can be used to bring illumination to many kinds of projects, but for this Instructable I'm going to focus on their use in wearables, because that's my area of expertise. Fiber optics are also especially great for clothing, costumes and accessories because they allow you to distribute light from a single source, therefore making your project require fewer lights and less power (always an important consideration when designing wearables). Because the fibers can carry light far from the electronics that are the source of illumination, they are also great for projects that need to be weather-proof or washable.
Fiber optics themselves are clear and colorless, so a fiber optic lighting system installed in a project will take on whatever color light you shine through it, or undulate with color patterns if your light source is programmable or dynamic.
Fiber optics come in a variety of diameters, shapes and types. In fact, the options seem to be growing every time I look online. Different variations are better for different applications, so I'll talk here about all the different types I've encountered and the best uses I've found for them. I'll also be adding to this Instructable as I discover more fiber optic knowledge, but for now, this is what I know.
The fiber optics I'm dealing with in this Instructable are the plastic fibers designed for lighting, not the slightly more sophisticated glass fiber bundles that transmit data rapidly over long distances, but they function on the same basic principle: Light shining in one end from a source of illumination, like an LED or a laser, travels down the fiber optic strand and emerges at the other end.
A standard "end emitting" fiber optic designed for lighting is a long thin strand of plastic consisting of a very clear core and an external coating called a cladding. (Another name for this type of structure is a "light pipe").
Depending on the quality of the fiber however, some amount of light may degrade, or be lost along the way. Some fiber optics make use of this light degradation, allowing a little light to escape through the cladding along the length of the fibers, thus creating an even glow that looks a bit like a neon tube. These fibers are called "side emitting" fiber optics.
End emitting fibers (also called end glow, or end light) are the classic fiber optics, with bright points of light at the ends and very little light escaping along the strands themselves. They are usually thin, somewhere from .25 to 3mm in diameter. They are also generally stiffer than the side emitting fibers.
I think projects like these are a great use of end light fiber optics because they use both the points of light at the ends of the fibers and the dimmer light along the strands as visual design elements. Allowing some of your end glow fibers to hang freely is also very visually pleasing and creates a mesmerizing light-painting effect when you move.
The intensity of the fiber's glow depends on the intensity of the light source. For example, a 1 watt LED or a laser will illuminate the fiber more than a neopixel LED. The glow of the fiber is also brightest close to the source of illumination, and fades gradually, or sometimes discolors, as more light escapes along the length of the fiber. I have found that the glow of a side light fiber optic, lit with a regular neopixel LED at full brightness, becomes difficult to see, and slightly yellowed, about 5 feet from the light source.
Side emitting fibers are much more visible in ambient light than end emitting fibers, but they still create a diffused glow that looks better in darkness. Side emitting fibers are great for projects where you want defined lines of light rather than pinpoint sparkles. They would also be good for creating inner glow or under-lit elements of a project where you don't want to see the fibers directly.
Multi Strand End Glow Cable: this is a collection of end glow fibers bundled inside a plastic casing. I have seen these with thick black casings designed to block all light except at the ends of the fibers, or in clear casings which allow you see the fibers all the way along the cable. Usually these cables are filled with fibers of all the same diameter, but I have also seen cables like these that contain a few slightly different sized fibers for variety (they are designed for making star effect ceilings). Buying fiber optics in this form can be useful especially if you are planning to use the fiber in bundles and you want to make sure all your fibers curve in the same direction. Taking the fibers out of the casing can be a little tricky however, and often results in nicking the fibers in places.
Multi Strand "Side Glow" Cable: Unlike the end glow cables, which contain straight fibers, the fibers inside these clear cables are twisted, ostensibly to allow more light to escape along their length. Like a lot of fiber optics, they seem to be designed for interior decor lighting, but after ordering and testing a sample of these, I really don't see that they have any advantage over large solid core side glow fibers, and they don't seem to work very well. I wouldn't recommend them for wearable projects.
Solid Fiber Optic Ribbon: I first saw these as the light in the inside of illuminated ankle bracelets for biking, and later in a pair of costume suspenders I found a Michael's crafts. As you can see in the second photo, these fibers are basically just like other large end glow fibers in a slightly different shape. Their glow seems to appear more visible when they are encased inside fabric or another diffusing material like they are in the suspender s in the third photo above. I am not even sure if these ribbons are technically fiber optics or just another plastic material that transmits light fairly well, but I think they have a lot of potential for interesting uses.
The possibilities for lighting fiber optics range from simple to extremely complex, and can make a huge difference to the look of your project. When you are choosing lighting, keep in mind that the brighter your light is, the more visible your fiber optic illumination will be. Also, from a personal aesthetic perspective, I think staying away from out-of-the-box primary LED colors like green, blue and red, helps keep a fiber optic project from looking like a cheesy Christmas decoration. I usually go for blended or de-saturated colors for a more subtle and beautiful effect.
Simple battery powered on/of lights like these floralights which come in variety of colors are a good option for very basic fiber optic illumination. Their shape makes them easy to attach to a bundle of fibers (or a single large fiber) using just heat shrink tubing and glue. There are a lot of pre-packaged lighting options like this available that can provide simple and beautiful illumination to your fiber optic project.
You can also buy pre-made products that are designed to light fiber optics. Natalina made her dress and coat using a fiber optic whip that comes pre-assembled with a large bundle of fibers attached to a bright RGB LED with many pre-loaded programs. In many ways these whips are great products, but the battery life is not as good as it should be and the shape and size of the whip is not particularly well suited to wearables.
Smaller, cheaper products like glowbys and fiber optic center pieces can also easily be incorporated into wearables, but they don't give you any ability to change the color of your lights, and they are often cheap and poorly made. They are definitely the lowest common denominator of fiber optics, but with a little creativity, they can still be a good addition to your costume.
Another option to light your fiber optics is to use small laser modules. I haven't personally experimented with this, but I have seen it done, and it definitely makes the fibers much brighter and more daylight visible. One constraint is the available laser colors which are relatively limited. The best use of lasers in fiber optics that I've seen was when someone hooked a rotating laser up to fiber optic fabric so different colors and patterns played over the surface of the fabric.
One of the most important things to think about when you are planning a fiber optic project is, "how am I going to attach my fibers to my lights?" It's crucial create a clean strong connection between your light source and the ends of your fibers so that light shines directly into the fibers and makes them glow as brightly as possible. A big challenge in this is the fact that the fiber optics themselves are quite slippery and don't adhere to most glues very effectively. I have found that superglue and some epoxies seem to stick the best, but you have to be careful not to get superglue on the end of the fibers where is can cause clouding that effects light transmission down the strand.
As I mentioned in the previous step, standard 5mm diffused LEDs are fairly easy to attach to fiber optics because you can slip a heat shrink tube over both the LED and the fiber optic bundle, shrink it down, add a little glue and you have a fairly strong connection between the two (see first photo). You can buy RGB addressable LEDs in this form from places like Adafruit, so you don't need to sacrifice programability. This Instructable also shows how to achieve a similar connection using Sugru instead of heat shrink. 041b061a72